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Introduction Generalization Structure Decomposition
» Goal: Solve Contextual Markov Decision Process (CMDP)
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* Gaussian Process MBTL (GP-MBTL, NeurlPS 2024) achieves up to sequential version of clustering

40x more sample efficient than independent & multi-task baselines: » M-MBTL extends K-Means to sequential setting, where each

J(mey) = J(mp,x) — |2 — Y| centroid represents a training task
Modeled by Gaussian process Linear generalization .
: « Example in 2D context ;
Experiments gap (1D) AMpIe I <L Context space.
Benchmark (CMDP) Independent Multi-task Random GP-MBTL M-MBTL (Ours) M/GP-MBTL (Ours) | Myopic Oracle N on- ﬁ
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— Structure Detection MBTL (SD-MBTL) dynamically identifies the
III I‘ﬂ:ﬁ?ﬁ{;“g’fs‘*ﬂs underlying generalization structure of CMDP and selects
I I Technology appropriate algorithm.

(12.49% aggregated improvement than strongest prior method)




