

Structure Detection for Contextual Reinforcement Learning

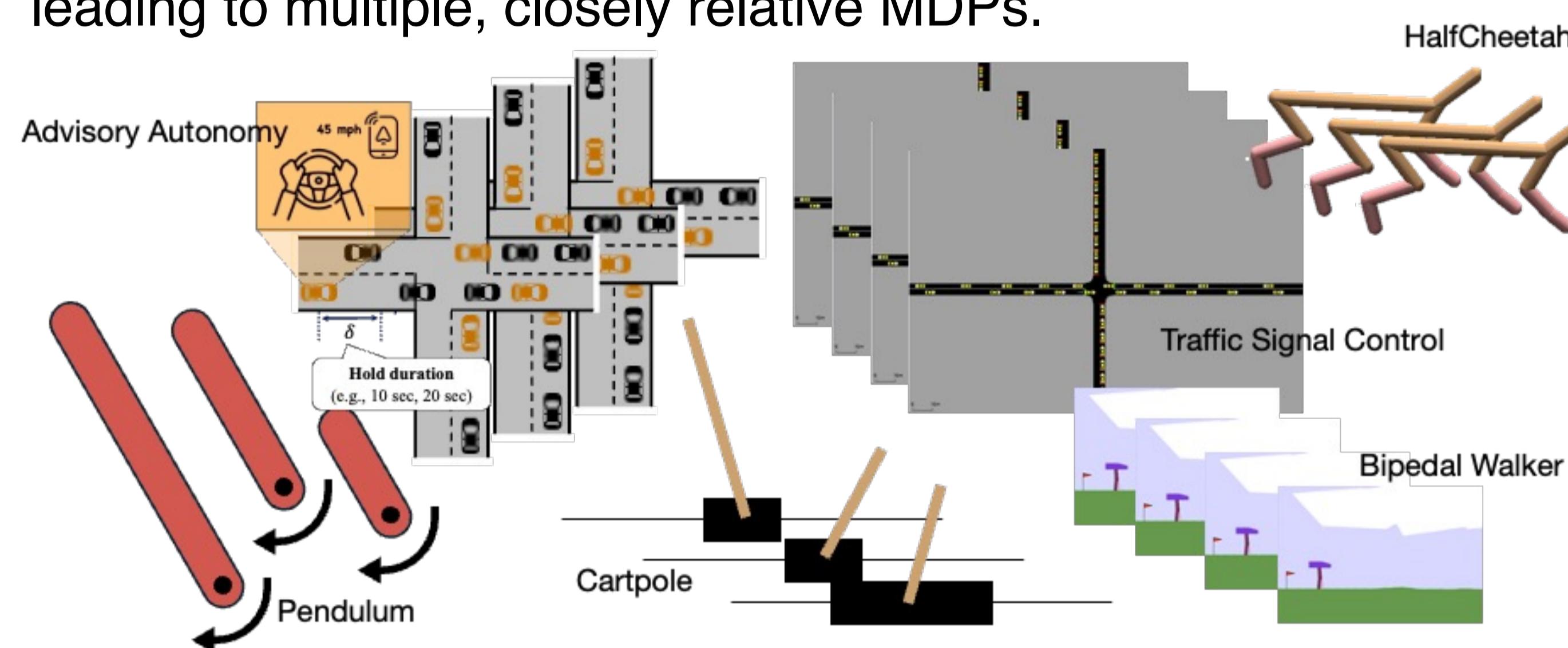
Tianyue Zhou*, Jung-Hoon Cho*, Cathy Wu

Massachusetts Institute of Technology

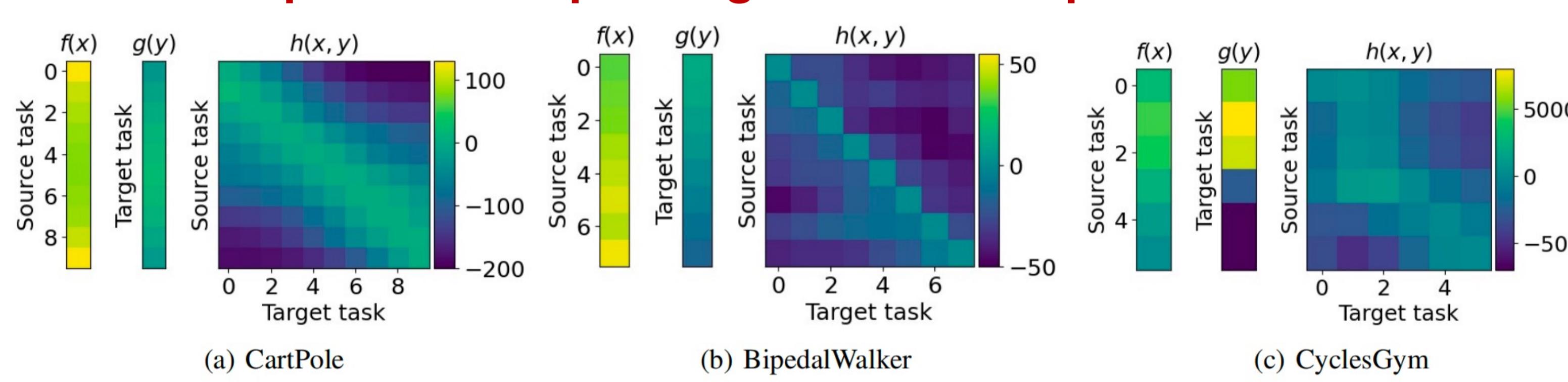
*These authors contributed equally

Introduction

- Goal:** Solve **Contextual Markov Decision Process (CMDP)** which extends MDPs with additional contextual information, leading to multiple, closely related MDPs.

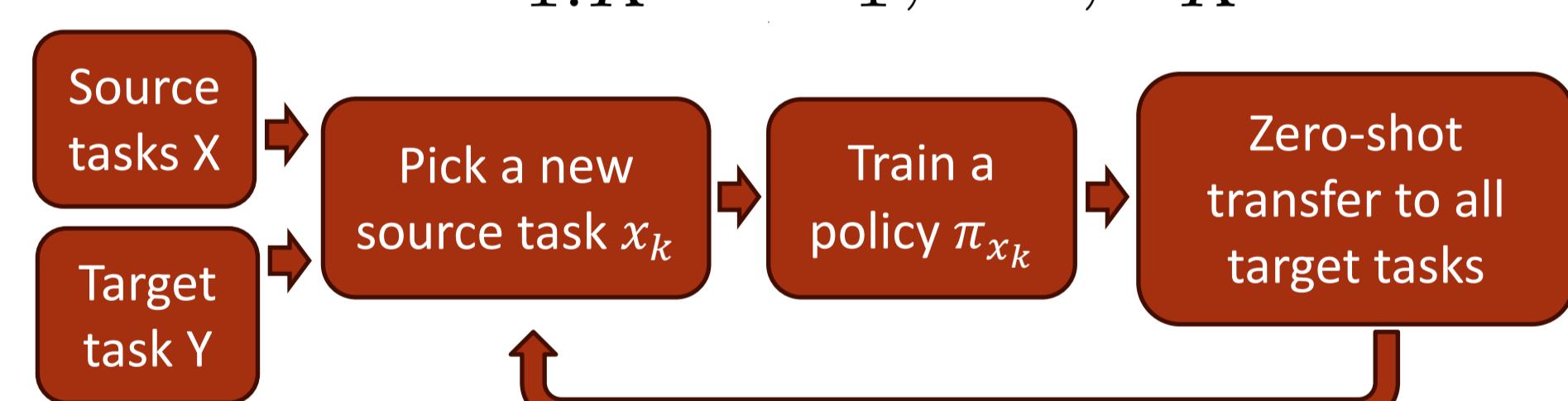


- Multi-policy training** is a promising paradigm. Model-Based Transfer Learning (MBTL) is a multi-policy approach that **strategically selects training tasks** and then **zero-shot transfers** the learned policies to target tasks
- Limitation & challenge:** Only considers **1D** contexts, while multi-dim demands **significantly more data**
- Motivation:** Detect structures in CMDP. Exploit the structure to curb unnecessary exploration.
- Heatmaps of decomposed generalization performance:**



Problem Formulation & Previous Work

- Contexts of target tasks: $Y = \{y_1, y_2, \dots, y_N\}$
- Each MDP: $\mathcal{M}_y = (S, A, P_y, R_y, \rho_y)$
- Goal: $x_k = \arg \max_{x \in X \setminus \{x_{1:k-1}\}} \mathbb{E}_{y \sim \mathcal{U}(Y)} [\max_{x' \in x_{1:k-1} \cup \{x\}} J(\pi_{x'}, y)]$
- Where: $x_{1:K} = x_1, \dots, x_K$



- Gaussian Process MBTL (**GP-MBTL**, NeurIPS 2024) achieves up to **40x** more **sample efficient** than independent & multi-task baselines:

$J(\pi_x, y) \approx J(\pi_x, x) - |x - y|$
Modeled by Gaussian process **Linear generalization gap (1D)**

Experiments

Benchmark (CMDP)	Independent	Multi-task	Random	GP-MBTL	M-MBTL (Ours)	M/GP-MBTL (Ours)	Myopic Oracle
CartPole (K = 12)	0.9346 ± 0.0003	0.9967 ± 0.0024	0.9861 ± 0.0017	0.9919 ± 0.0013	0.9896 ± 0.0016	0.9898 ± 0.0016	0.9998 ± 0.0000
BipedalWalker (K = 12)	0.7794 ± 0.0011	0.5680 ± 0.0919	0.8051 ± 0.0045	0.8073 ± 0.0044	0.8315 ± 0.0029	0.8261 ± 0.0030	0.8629 ± 0.0011
IntersectionZoo (K = 50)	0.2045 ± 0.0008	0.3788 ± 0.1059	0.5288 ± 0.0108	0.5840 ± 0.0092	0.4878 ± 0.0064	0.5682 ± 0.0069	0.6305 ± 0.0082
CyclesGym (K = 50)	0.2133 ± 0.0002	0.2081 ± 0.0002	0.2198 ± 0.0001	0.2205 ± 0.0001	0.2201 ± 0.0001	0.2214 ± 0.0001	0.2214 ± 0.0001
Aggregated Performance	-2.9063 ± 0.1470	-3.1120 ± 1.8408	0.0000 ± 0.0467	0.1681 ± 0.0539	0.1822 ± 0.0503	0.2930 ± 0.0403	1.0000 ± 0.0236

12.49% aggregated improvement

- M/GP-MBTL matches the stronger of M- and GP-MBTL and successfully detects to the right algorithm !

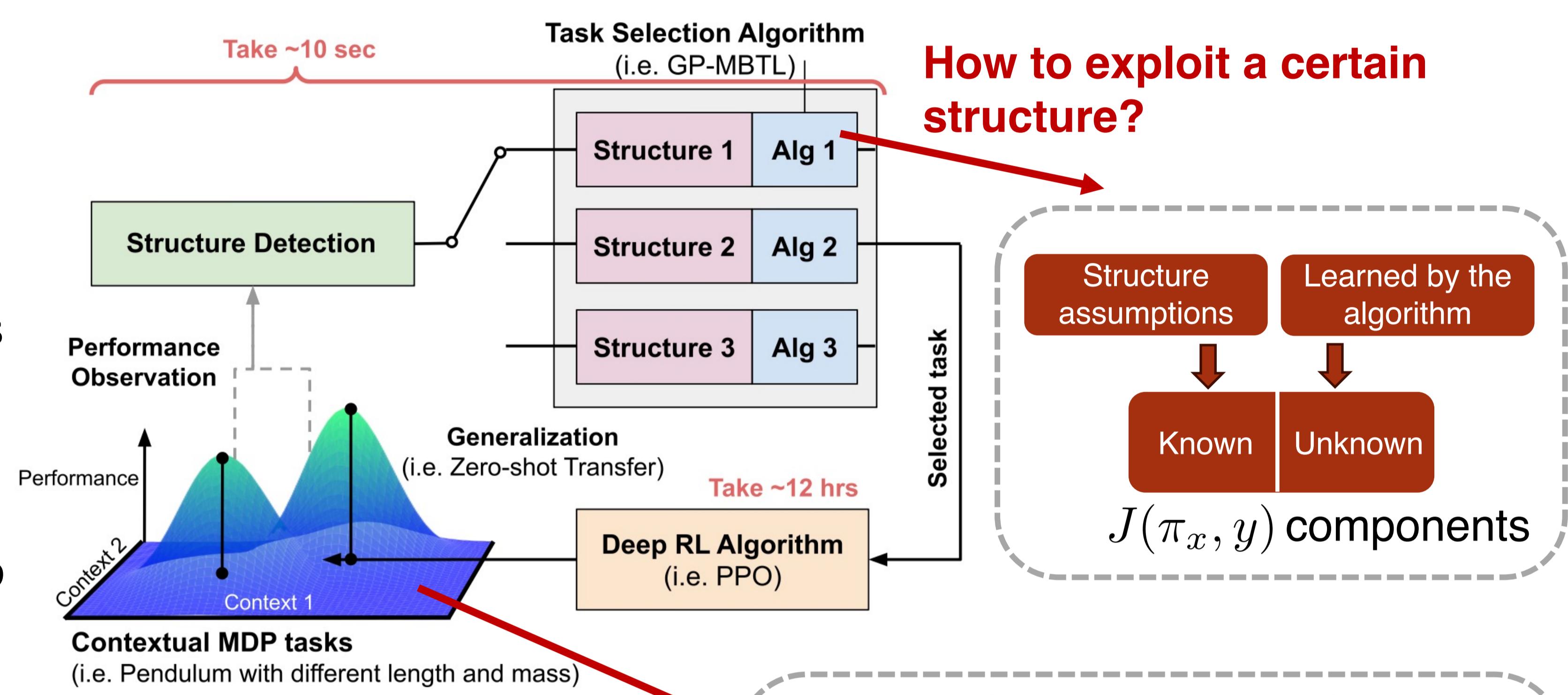
Generalization Structure Decomposition

- Inspired by the Sobol-Hoeffding Decomposition:
$$C := \mathbb{E}_{x \in X, y \in Y} [J(\pi_x, y)] \quad g(y) := \mathbb{E}_{x \in X} [J(\pi_x, y)] - C$$

$$f(x) := J(\pi_x, x) - g(x) - C \quad h(x, y) := J(\pi_x, y) - f(x) - g(y) - C$$
- We can get:
$$J(\pi_x, y) = f(x) + g(y) + h(x, y) + C$$

policy quality **task dissimilarity** **task difficulty** **constant**

Structure Detection Model-Based Transfer Learning



Mountain Structure

Structure assumptions:

(1) Constant $f(x)$:

$$f(x) = C$$

(2) Distance Metric $h(x, y)$:

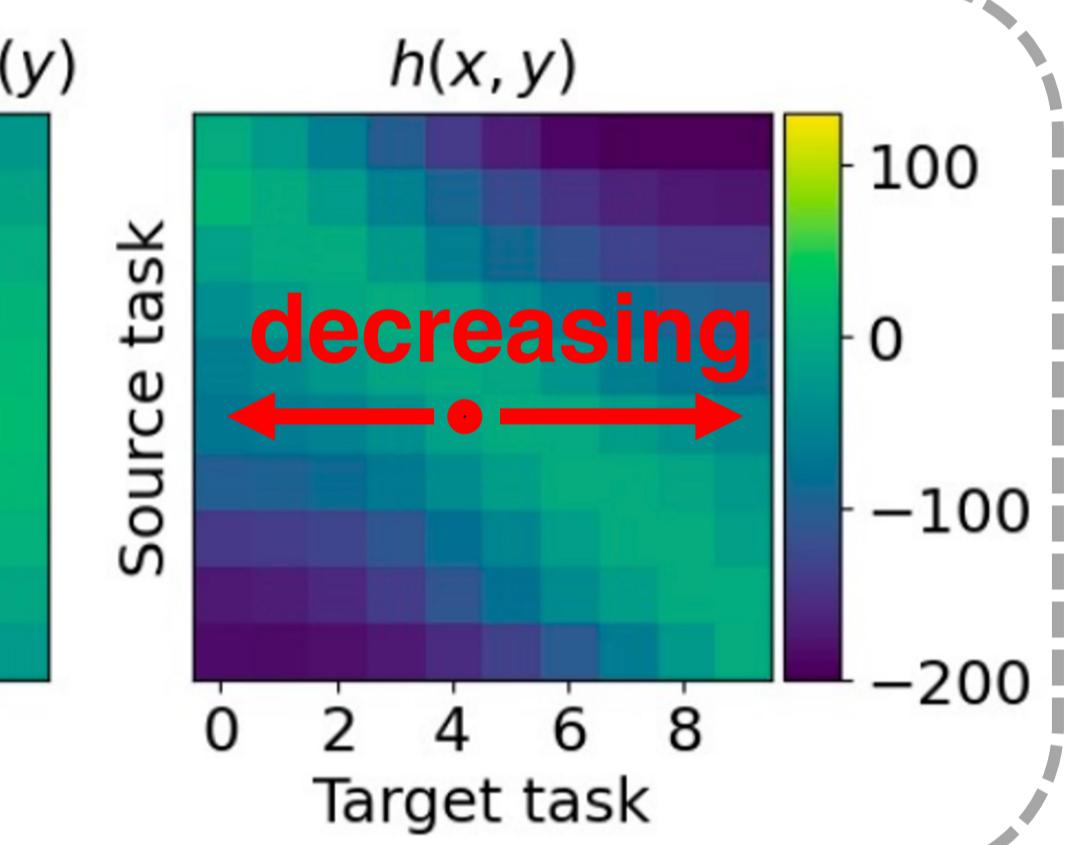
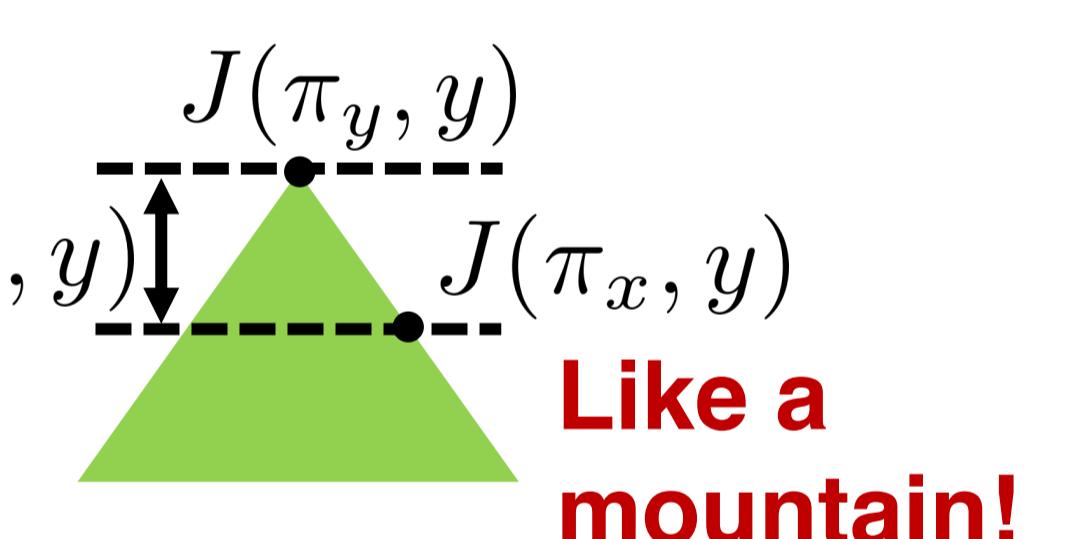
$$h(x, y) = -\text{dist}(x, y)$$

(1) + (2) = Mountain:

$$J(\pi_x, y) = J(\pi_y, y) - \text{dist}(x, y)$$

Unknown: $g(y)$:

$$g(y) \approx \mathbb{E}_{x \in x_{1:k}} [J(\pi_x, y)] - C$$

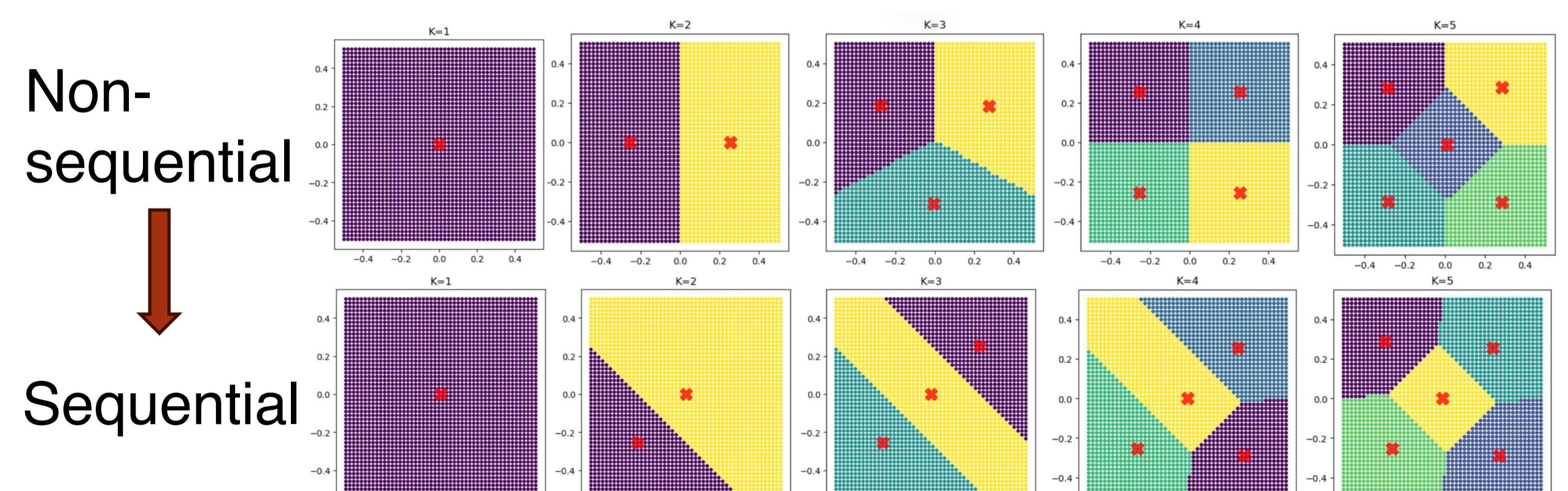


Structure Detection

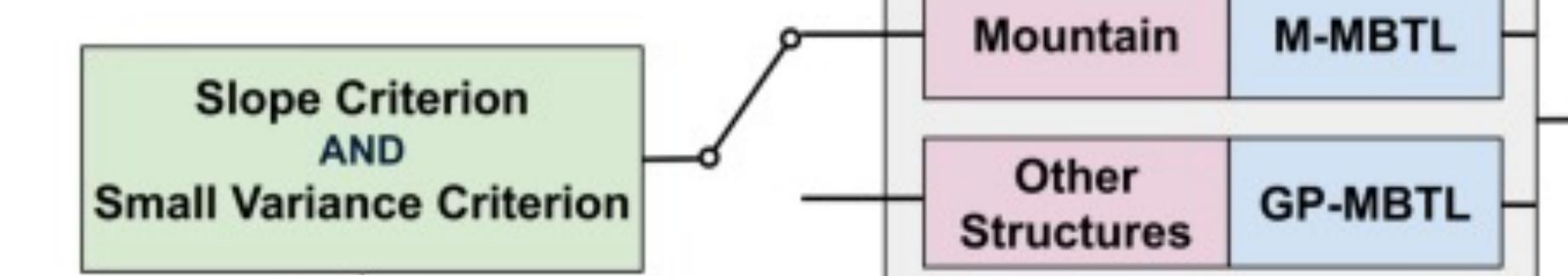
- Criterion 1: $f(x)$ has a relatively small variance
- Criterion 2: The majority of slope signs in $h(x, y)$ are decreasing

Mountain Model-Based Transfer Learning (M-MBTL)

- With Mountain structure, the problem reduces to the **sequential version of clustering**
- M-MBTL extends K-Means to sequential setting, where each centroid represents a training task
- Example in 2D context space:



M/GP-MBTL = M-MBTL + GP-MBTL



Structure Detection MBTL (SD-MBTL) dynamically identifies the underlying generalization structure of CMDP and selects appropriate algorithm.

(12.49% aggregated improvement than strongest prior method)

